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We use continuous-time duration models to produce a data-driven analy-
sis of moviegoer behavior surrounding the 2023 film Wonka. In particular,
we examine the plausibility of duration dependence, zero-inflation, and het-
erogeneity in consumers’ propensities to watch the film. We find that a
zero-inflated exponential model provides the best base model, upon which we
further incorporate various calendar and social media effects. Our findings
indicate that including calendar effects significantly improves the model’s
predictive accuracy, providing valuable insights for marketing strategies in
the film industry. The relevance of social media on ticket sales, however,
remains an open question.

Understanding the factors that drive daily movie ticket sales is crucial for strategic man-
agerial decision making in the film industry. This paper seeks to address how calendar
effects and social media buzz can be used to model moviegoer behavior. We explore several
research questions:

• How do calendar effects such as the day of week and holidays impact ticket sales?

• To what extent can social media activity predict daily ticket sales?

Our analysis utilizes a dataset on ticket sales from December 15, 2023 to March 15, 2024 for
the 2023 film Wonka taken from a representative sample of 50,000 active moviegoers. This
dataset allows us to construct a nuanced model that integrates these covariates, providing
a deeper understanding of the dynamics at play in movie ticket purchasing behavior.

I. Base Model Selection

A good base model provides the foundation of our story of consumer behavior. Accord-
ingly, we explore several families of continuous-time duration models before incorporating
covariates. In particular, we consider the Pareto II (EG), Burr XII (WG), Exponential
(E), and Weibull (W), as well as a few zero-inflated (ZI) and 2-segment latent class (2-seg)
variations on these classes of models. The exponential class (EG, E) models the time of
initial adoption as an Exponential(λ) distribution whereas the Weibull class (WG, W) al-
lows for the possibility of duration dependence in the time of adoption. Heterogeneity is
examined through either a Gamma mixing distribution or latent-class segmentation, and
the possibility of “hardcore-never-Wonkas” (HCNWs) who will never watch the movie is
ascertained through zero-inflation. By assessing all these models, we can deduce whether
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there is duration dependence and HCNWs in addition to the degree of heterogeneity in the
behavior of moviegoers.
To determine the most appropriate model, we consider model fit as described by the

Bayesian Information Criteria (BIC), mean absolute percent error (MAPE), and root mean
square error (RMSE). BIC appropriately balances fit and parsimony with penalties for
excessive parameters while MAPE and RMSE provide interpretable measures of model fit.
Given that the number of incremental adopters in later periods become small, percent error
may be high even if the fit is decent (e.g., expecting 3 when there are 4 actual adopters
yields a percent error of 25%). As such, RMSE may be a more useful metric. To assess
the forecasting abilities of the models, we fit to data for the first seven weeks (December
15, 2023 to February 1, 2024), thus creating a holdout set of the last six weeks (February
2, 2024 to March 15, 2024). Table 1 presents the parameter estimates and goodness-of-fit
metrics for the eight base models we consider. Figure 1 displays compares tracking plots
for the EG and zero-inflated exponential (ZIE).

Table 1—Estimated parameters and fit metrics: Base Models

EG ZIEG WG ZIWG 2-seg E ZIE ZI 2-seg E ZIW

πZI – 0.684 – 0.685 – 0.684 0.684 0.685
r 0.183 29667 0.167 4552 – – – –
α 8.233 517280 8.007 81822 – – – –
c – – 1.046 1.013 – – – 1.013
λ1 – – – – < 0.001 0.057 0.057 0.056
λ2 – – – – 0.057 – 0.057 –
π1 – – – – 0.684 – 0.600 –

LL −84528 −84126 −84524 −84126 −84126 −84126 −84126 −84125
BIC 169077 168285 169081 168294 168285 168274 168296 168283
MAPE-IS 113.47% 81.63% 112.45% 80.93% 81.63% 81.63% 81.63% 80.92%
MAPE-OOS 439.61% 54.28% 428.34% 52.40% 54.28% 54.27% 54.27% 52.37%
RMSE-IS 162.10 156.08 163.57 156.84 156.08 156.08 156.08 156.83
RMSE-OOS 53.12 37.77 51.87 38.35 37.77 37.77 37.77 38.36

parameter πZI c c c
compared to EG EG ZI EG ZI E
χ2 LRT 803.00 7.63 1.79 1.897
p-value < 0.001 0.006 0.181 0.168

Note: The following abbreviations are used: E (exponential), W (Weibull), G (gamma), ZI (zero-inflated), 2-seg
(latent class with 2 segments). Table 1 reports maximum likelihood estimates of parameters for each of eight base
model candidates. For zero-inflated models, πZI is the proportion who are hardcore-never-Wonkas. For gamma
mixtures (EG, WG), r, α respectively refer to the shape and scale parameters. For Weibull models, c refers to the
duration dependence shape parameter. For pure exponential and Weibull models, λi refers to the rate parameter
of segment i (where i = 1 for single-segment models). For 2-segment models, π1 refers to the proportion with λ1.
Log likelihood (LL) and the Bayesian Information Criteria (BIC) are reported for all models alongside in-sample (IS)
and out-of-sample (OOS) MAPE and RMSE. Likelihood ratio tests (LRT) are performed for select parameters as
indicated (df=1).

The parameter estimates offer three takeaways: there is (1) clear evidence for zero-
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Figure 1. Tracking plots: EG and ZIE

Note: Figure 1 displays the tracking plots for the EG and ZIE models compared to the actual data. The vertical
grey dashed line at Week 7 denotes the split between training data (Weeks 0–7) and holdout data (Weeks 7–13).

inflation, (2) minimal—if not a lack of—duration dependence, and (3) no heterogeneity
after accounting for HCNWs. The zero-inflated models all have the lowest BIC, MAPE,
and RMSE, and an LRT between ZIEG and EG confirms a drastically better fit from
including a spike at zero. Figure 1 visually confirms the improvement. Even the 2-segment
exponential drives λ1 to 0 with a segment proportion π1 nearly identical to other estimates
of the proportion πZI of HCNWs. The robustness of the estimate of πZI to the model
specification provides strong evidence that 68.4% of moviegoers are HCNWs in our training
set. In assessing the plausibility of duration dependence, we note that LRTs of Weibull
models with their exponential counterparts yield insignificant p-values (the significance in
the WG-EG comparison disappears once HCNWs are factored in) and the BIC penalizes
the additional parameter. Turning to the nature of heterogeneity, ZIEG and ZIWG yield
exceedingly large estimates of r, α, suggesting homogeneity to the point where λ is almost
concentrated at a point. In fact, these estimates respectively yield mean lambda values
of 0.057 and 0.056 with variances < 0.001—precisely the estimates in the ZIE and ZIW
models, with the negligible variance reflected in the fact that λ1 = λ2 in the ZI 2-seg E.
The similar fit produced by the ZIE and ZIW with fewer parameters is confirmed by the
lower BICs and unchanged MAPEs and RMSEs. Altogether, the zero-inflation with no
duration dependence and homogeneity is best captured by the zero-inflated exponential
(ZIE), which will serve as the base model for the remainder of our analysis.
Before any covariates have been considered, we already have a partially-formed story of

consumer behavior. According to the ZIE, πZI of moviegoers will never watch Wonka—
a reasonable assumption given genre preferences and film taste. The remaining 1 − πZI

watch the movie for the first time as given by an exponential distribution with parameter
λ, suggesting a mean watch date of 1

λ days after release. The estimated values of πZI and
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λ will be nailed down in Section 4, once covariates are incorporated.

II. Calendar Effects

With a base model in hand, we turn to incorporating the first set of covariates: calendar
effects. Intuition and a visual analysis of the data (see Figure 1) suggest a weekly cyclicality
with additional effects around holidays. Experience indicates that people are more likely
to go to movie theaters on weekends and holidays. Accordingly, we assess the inclusion
of (1) weekly seasonality via dummy variables for the day of week, (2) holiday effects via
dummy variables for periods around federal holidays, (3) interactions between weekends
and holidays, and (4) a one-time effect on the premiere date.
Each covariate is supported by a reasonable story. People are more free on weekends and

thus more likely to go to a theater on those days—such a phenomenon would be reflected
in larger positive values on ω6, ω7, the coefficients on dummy variables for Saturday and
Sunday. To avoid multicollinearity, we drop Monday dummies such that the other ωk’s
are expressed relative to a baseline set by Monday. Differential effects on holidays are
similarly plausible due to spare time or—in the case of Valentine’s Day—a special occasion,
as corroborated by box office data showing higher revenues around holidays (Box Office
Mojo, 2023). To that end, we include a dummy variable indicating Christmas and New
Year’s break (December 23 to January 11), MLK weekend (January 13–15), Valentine’s Day
(February 14), and President’s Day Weekend (February 17–19). To assess the possibility
that the days around Christmas and New Year’s exhibit different effects, we also consider
separate indicator variables for Christmas/New Year’s and all other holidays. Due to
longer breaks, reunited families, and the air of holiday festivities, moviegoers may behave
differently around Christmas than a typical long weekend (Whitten, 2019). In theory, both
Christmas (η1) and holiday (η2) effects should be positive, with η1 predicted to exhibit a
larger effect. An additional concern is that the effect of holidays may overlap with the
effect of weekends in a non-linear manner—namely, the effect of a holiday may differ for
weekends than weekdays. We address this complication by adding an interaction term η3
between weekends and holidays, expecting η3 to be negative: since people already tend to
go to the theater on regular weekends, the incremental effect of a holiday should be smaller
for a holiday weekend than a holiday weekday. Finally, we consider the distinctiveness
of the premiere date (December 15). The first showing of the film may draw additional
attention that we would expect to manifest in a positive coefficient α. To assess all these
factors, we fit Models 1–5 to consider different combinations of these calendar effects and
present results in Table 2 and Figure 2.
We have evidence for the significance of each of the factors discussed above. Both the BIC

and LRT confirm that the addition of weekly seasonality, separate holiday and Christmas
effects, holiday-weekend interactions, and the premiere each improve model fit more than
additional parameters are penalized. Moreover, the addition of these factors improve both
in-sample and out-of-sample RMSE and MAPE, bringing the OOS RMSE (respectively

1We defined this period ex ante (prior to fitting models) considering that December 23 is a Saturday whereas
January 2 is a Tuesday when many may return to work.
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Table 2—Estimated parameters and fit metrics: ZIE with calendar effects

Model 1 2 3 4 5

πZI 0.681 0.676 0.674 0.676 0.672
λ 0.050 0.039 0.029 0.029 0.027
ω2 (Tue) −0.053 0.037 0.149 0.176 0.192
ω3 (Wed) −0.253 −0.162 −0.046 −0.019 −0.004
ω4 (Thur) −0.266 −0.173 −0.054 −0.025 −0.011
ω5 (Fri) 0.239 0.378 0.550 0.571 0.441
ω6 (Sat) 0.477 0.481 1.082 1.102 1.153
ω7 (Sun) 0.145 0.146 0.748 0.769 0.817
η1 (Holiday) – 0.386 0.842 1.102 1.129
η2 (Christmas) – – – 0.824 0.907
η3 (Weekend×Holiday) – – −1.081 −1.115 −1.181
α (Premiere) – – – – 0.508

LL −83666 −83432 −82945 −82926 −82852
BIC 167418 166962 165998 165971 165834
MAPE-IS 61.44% 55.85% 38.99% 36.89% 36.45%
MAPE-OOS 46.41% 53.33% 43.70% 37.94% 46.08%
RMSE-IS 135.19 129.33 92.50 91.81 74.11
RMSE-OOS 31.01 28.52 22.99 24.25 21.15

parameter ω2, . . . , ω7 η1 η3 α
compared to ZIE 1 2 4
χ2 LRT 920.92 467.04 974.70 147.82
p-value < 0.001 < 0.001 < 0.001 < 0.001

Note: Table 2 reports maximum likelihood estimates of parameters and goodness-of-fit statistics for five different
specifications of calendar effects. ω2, . . . , ω7 capture weekly cyclicality. η1 captures holiday effects, where holidays
are defined as all holidays in Models 1–3 and only non-Christmas/New Year holidays in Models 4–5. η2 captures
Christmas/New Year holiday effects. η3 captures an interaction effect between weekends and any holiday. α captures
the effect of the premiere day. The LRTs are performed with df=1 for Models 2,3,5 and df=6 for Model 1.

MAPE) down from 37.77 (54.27%) to 21.15 (46.08%)—a substantial improvement that is
visually confirmed by Figure 2. We further note that the estimate of πZI has remained
relatively consistent around 0.68, bolstering the robustness of evidence for HCNWs. The
estimate of λ decreases somewhat as more calendar effects are added, suggesting that
the base model flattens somewhat after adjusting for calendar covariates. On a technical
note, some ωk’s are near zero and may not be individually significant, but we keep all ωk’s
together due to the robustness of the story of weekly cyclicality and the joint significance of
the coefficients. Keeping the entire set of ωk’s also allows us to isolate the weekly cyclicality,
as in Figure 6 (see Appendix for details).
For the most part, our predictions match up with the empirical findings. There is a

weekly surge in ticket sales from Friday to Sunday with a spike on Saturday (see Section
5 for a graph and more detailed analysis of the weekly seasonal structure). There is also a
large positive effect on holidays with a negative attenuation on holiday weekends relative to
holiday weekdays, as expected and explained previously. Moreover, the premiere exhibits
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Figure 2. Tracking plot: Model 5 (ZIE with all calendar effects)

Note: Figure 2 displays the tracking plot for the ZIE with all calendar effects (Model 5) compared to the actual
data. The vertical grey dashed line at Week 7 denotes the split between training data (Weeks 0–7) and holdout data
(Weeks 7–13).

a positive effect on sales, in accordance with our previously stated belief in the appeal
of being among the first to watch a movie. One unexpected result is that the Christmas
season exhibits a somewhat smaller effect than other holidays. This could be explained by
either the longer duration of the Christmas-New Year break wherein additional ticket sales
are more spread out over the break (rather than concentrated in one or two days as may
be the case on a long weekend) or people opting to spend the break in other ways such as
traveling. Nevertheless, we have evidence that the effect of Christmas is different than that
of regular holidays.

III. Social Media Effects

Previous literature in box office predictions has explored the predictive power of word-
of-mouth or social media hype surrounding a film (Liu, 2006; Lehrer and Xie, 2022; Liao
et al., 2022). These studies conclude that social media can improve predictions; they,
however, seek to predict overall box office success rather than granular daily ticket sales.
To examine the plausibility that these results may extend to daily ticket sales, we assess
the incorporation of several measures of social media volume surrounding the Wonka film.
We obtain data from Keyhole, a social media analytics firm, on the daily number of social

media posts using the hashtag “#WonkaMovie” across platforms including Instagram and
Twitter/X from December 8, 2023 to March 15, 2024. The data may not be of the best
quality, given that counts are rounded to the nearest 100 and some days have counts of 0
(perhaps due to a limited domain from which Keyhole scrapes these data). Nevertheless,
it may serve as an adequate proxy for social media volume around the film. A sample of
the data is provided in Table 3 and a plot is presented in Figure 3.
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Table 3—Sample of Social Media Data

Date 12/8/23 12/9/23 12/10/23 . . . 3/13/24 3/14/24 3/15/24

Number of Posts 800 1700 1200 . . . 0 100 100

Source: Keyhole.

Figure 3. Social Media Data and Unit Ticket Sales

Note: Figure 3 displays the time series of Wonka ticket sales and social media volume. The former is plotted in black
and uses the right axis scale. The latter is plotted in yellow and uses the left axis scale.

From these data, we produce two measures of social media volume for each day t with
social media count st: (1) a rolling sum of posts over the previous week (xt =

∑t−1
k=t−7 sk)

and (2) a lagged count xt = st−1. The former operates under the story that social media
posts can influence moviegoer behavior for up to seven days (plausible for “planners” who
make plans a few days in advance) whereas the latter only lets posts affect sales for the
next day (more spontaneous behavior). Given the generally positive reviews of Wonka,
greater social media volume should in theory increase unit sales. By only using lags rather
than contemporaneous social media effects, we attempt to sidestep potential concerns of
endogeneity: a ticket sale in time t may have reverse causality on social media volume in
time t as people may post after watching the movie, but it is less likely that a ticket sale in
time t affects social media volume in time t− 1. This strategy of using lagged explanatory
variables to avoid endogeneity has been previously used in econometric literature (Green,
Malpezzi and Mayo, 2005; Aschhoff and Schmidt, 2008), but we also note that some scholars
are concerned with whether it truly removes endogeneity (Bellemare, Masaki and Pepinsky,
2017). On top of the two suggested measures, we further explore quadratic terms for each
variable definition in case the effect is not linear. Results for these four models (Models
6–9) are presented in Table 4 and Figure 4.
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Table 4—Estimated parameters and fit metrics: ZIE with calendar and social media effects

Model 6 7 8 9

πZI 0.690 0.691 0.684 0.681
λ 0.044 0.044 0.034 0.030
ω2 (Tue) 0.127 0.119 0.102 0.190
ω3 (Wed) −0.072 −0.080 −0.062 −0.034
ω4 (Thur) −0.086 −0.088 −0.089 −0.029
ω5 (Fri) 0.346 0.345 0.364 0.418
ω6 (Sat) 1.104 1.108 1.263 1.398
ω7 (Sun) 0.783 0.783 0.921 1.012
η1 (Holiday) 0.918 0.897 1.150 1.164
η2 (Christmas) 0.629 0.634 0.822 0.843
η3 (Weekend×Holiday) −1.114 −1.108 −1.362 −1.417
α (Premiere) 0.466 0.492 0.626 0.534
Social Media Predictor (X) Past Week Past Week Past Day Past Day
β1 (X) −0.148 −0.201 −0.080 0.067
β2 (X2) – 0.016 – −0.031

LL −82787 −82786 −82814 −82793
BIC 165714 165724 165768 165737
MAPE-IS 33.20% 33.28% 31.35% 29.19%
MAPE-OOS 57.74% 60.60% 40.03% 33.45%
RMSE-IS 66.25 65.48 71.16 69.59
RMSE-OOS 35.55 36.25 28.29 25.59

parameter β1 β2 β1 β2

compared to 5 6 5 8
χ2 LRT 130.55 1.43 77.10 41.90
p-value < 0.001 0.232 < 0.001 < 0.001

Note: Table 4 reports maximum likelihood estimates of parameters and goodness-of-fit statistics for four different
specifications of social media effects added onto Model 5. Models 6 and 7 consider the volume of social media in the
past week whereas Models 8 and 9 consider the volume in the previous day. A linear and quadratic effect is examined
for each. All LRTs are performed with df=1.

First assessing the quadratic term, we observe that β2 is insignificant in Model 7 but
significant in Model 9 according to both BIC and LRT, so we compare Models 6 and 9. BIC
suggests Model 6 is better whereas out-of-sample MAPE and RMSE provide more support
for Model 9. The parameter estimates, however, raise some questions. The β1 for Model
6 is negative, suggesting that greater social media volume decreases unit sales. Likewise,
the coefficients on Model 9 suggest an positive effect up to a point, after which more posts
hurt ticket sales. Given the positive reviews (e.g. 82% on Rotten Tomatoes), this result
seems to run counter to the story of social media effects. Potential explanations could
be the aforementioned poor data quality and a potential failure to eliminate endogeneity.
Further studies could seek better data on social media volume to reassess the effect of social
media. For this paper, considering the totality of evaluation metrics, we choose to discard
social media effects in favor of a ZIE with all calendar covariates (Model 5), which has a
well-founded story, a smaller out-of-sample RMSE, and better parsimony.
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Figure 4. Tracking plots: Models 6 and 9

Note: Figure 4 displays the tracking plot for Models 6 and 9 compared to the actual data. The vertical grey dashed
line at Week 7 denotes the split between training data (Weeks 0–7) and holdout data (Weeks 7–13).

IV. Robustness

Building on Model 5, we briefly assess the robustness of parameter estimates by varying
the estimation sample, as presented in Table 5.

Figure 5. Tracking plot: ZIE with calendar effects, fitted on full sample

Note: Figure 5 displays the tracking plot for the final model, the ZIE with all calendar effects fitted on the full
sample, compared to the actual data.
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Table 5—Robustness Checks: ZIE with calendar effects

Estimation Sample 5 weeks 7 weeks 9 weeks Full sample

πZI 0.660 0.672 0.671 0.665
λ 0.026 0.027 0.026 0.024
ω2 (Tue) 0.177 0.192 0.192 0.204
ω3 (Wed) −0.011 −0.004 −0.028 −0.039
ω4 (Thur) −0.023 −0.011 −0.020 −0.025
ω5 (Fri) 0.382 0.441 0.462 0.481
ω6 (Sat) 1.068 1.153 1.200 1.232
ω7 (Sun) 0.746 0.817 0.846 0.877
η1 (Holiday) 0.984 1.129 1.084 1.155
η2 (Christmas) 0.877 0.907 0.914 0.952
η3 (Weekend×Holiday) −1.112 −1.181 −1.208 −1.214
α (Premiere) 0.553 0.508 0.500 0.549

MAPE-IS 34.39% 36.45% 37.64% 45.26%
MAPE-OOS 67.85% 46.08% 45.93% –
RMSE-IS 79.53 74.11 68.57 56.92
RMSE-OOS 21.50 21.15 20.24 –

Note: Table 4 reports maximum likelihood estimates of parameters and goodness-of-fit statistics for the ZIE with all
calendar effects fitted on four different estimation samples.

All parameter estimates are stable across the estimation samples, strengthening the ev-
idence for the robustness of parameter estimates in the full model. The final model fitted
on the full sample is plotted in Figure 5.

V. Discussion & Conclusion

We conclude with a managerial analysis of the final model: the ZIE with all calendar effect
fitted on the full sample. Given the representative sample, we can generalize conclusions
to the broader moviegoer population.
As noted in Section 2, πZI = 0.665 suggests that 66.5% of active moviegoers will never

watch Wonka, and the remaining 33.5% have a homogeneous propensity to watch the film
given by an exponential distribution with parameter λ = 0.024. The mean time to watch is
41.7 days after release (around January 25). We also observe a weekly cycle driving ticket
sales, which is plotted in Figure 6. The derivations of these day-of-week effects from the
ωk estimates is provided in the Appendix. There is low activity from Monday to Thursday
but sales picking up on Friday and the weekend, with Saturday being the most popular
day. There is a slight pick-up on Tuesdays, possibly due to many cinemas having “discount
Tuesday” deals. Long weekends and holiday breaks are also popular days for watching
movies. For a theater manager, these insights into consumer demand may prove valuable
for ticket pricing and theater allocation.
Using our model, we can forecast sale in the future (Figure 7). It seems as if sales will

be dying down in the coming weeks, with fewer than 5 sales expected from the initial
sample of 50,000 consumers by the end of April. This kind of model can thus provide a
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Figure 6. Weekly Seasonal Effect

theater manager will key information on when to stop showing the film. Overall, this paper
highlights the significant role that calendar effects play in shaping movie ticket sales, offering
actionable insights for managers to optimize film marketing and distribution strategies
effectively.

Figure 7. Forecasted sales: March 16 to April 26
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Appendix

A1. Derivation of day-of-week effects

Appendix A1 discusses how we back out the day-of-week effects in Figure 6 from the
dummy coefficients ω2, . . . , ω7. We have estimates of the coefficients on dummy variables for
Tuesday (ω2) to Sunday (ω7). Recall that we exclude the dummy variable ω1 for Monday to
avoid multicollinearity. Hence, the effect of Monday is absorbed into the estimated baseline
intercept term β0 and all other dummy coefficients are relative to the Monday effect. In our
proportional hazards regression framework, β0 is used to establish the baseline propensity:
λ = exp(β0). Hence, β0 = ln(λ̂), where λ̂ is our estimate of the baseline exponential rate

(λ̂ = 0.024 in the final model).
Let Ω1, . . . ,Ω7 respectively denote the day-of-week effects for Monday to Sunday, and let

β∗
0 denote the “true” intercept term less the effect of ω1. Then, we have the system

β0 = β∗
0 +Ω1

ω2 = Ω2 − Ω1

ω3 = Ω3 − Ω1

...

ω7 = Ω7 − Ω1

Note that the left-hand side of the system equations are observed while the right-hand side
contains the unobserved terms we wish to deduce. In our additive model of seasonality,
Ω1 +Ω2 + · · ·+Ω7 = 0, which gives us 8 equations and 8 unknowns. To solve this system,
we first add β0 to ω2, . . . , ω7 to obtain ωk+β0 = β∗

0 +Ωk for k = 2, . . . , 7. Taking the mean
of β0, ω2 + β0, . . . , ω7 + β0 and applying Ω1 +Ω2 + · · ·+Ω7 = 0, we get

1

7

[
β0 +

7∑
k=2

(ωk + β0)

]
=

Ω1 +Ω2 + · · ·+Ω7 + 7β∗
0

7
=

0 + 7β∗
0

7
= β∗

0

All that remains is to the subtract β∗
0 from β0, ω2 + β0, . . . , ω7 + β0. Our estimates of the

day-of-week effects are thus given by

Ω1 = β0 − β∗
0

Ω2 = ω2 − β∗
0

Ω3 = ω3 − β∗
0

...

Ω7 = ω7 − β∗
0


